Generalization Bounds for Domain Adaptation
نویسندگان
چکیده
In this paper, we provide a new framework to study the generalization bound of the learning process for domain adaptation. We consider two kinds of representative domain adaptation settings: one is domain adaptation with multiple sources and the other is domain adaptation combining source and target data. In particular, we use the integral probability metric to measure the difference between two domains. Then, we develop the specific Hoeffding-type deviation inequality and symmetrization inequality for either kind of domain adaptation to achieve the corresponding generalization bound based on the uniform entropy number. By using the resultant generalization bound, we analyze the asymptotic convergence and the rate of convergence of the learning process for domain adaptation. Meanwhile, we discuss the factors that affect the asymptotic behavior of the learning process. The numerical experiments support our results.
منابع مشابه
Generalization Bounds Derived IPM-Based Regularization for Domain Adaptation
Domain adaptation has received much attention as a major form of transfer learning. One issue that should be considered in domain adaptation is the gap between source domain and target domain. In order to improve the generalization ability of domain adaption methods, we proposed a framework for domain adaptation combining source and target data, with a new regularizer which takes generalization...
متن کاملGeneralization Bounds for Representative Domain Adaptation
In this paper, we propose a novel framework to analyze the theoretical properties of thelearning process for a representative type of domain adaptation, which combines data frommultiple sources and one target (or briefly called representative domain adaptation). Inparticular, we use the integral probability metric to measure the difference between the dis-tributions of two d...
متن کاملDomain Adaptation: Learning Bounds and Algorithms
This paper addresses the general problem of domain adaptation which arises in a variety of applications where the distribution of the labeled sample available somewhat differs from that of the test data. Building on previous work by Ben-David et al. (2007), we introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss func...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملM Ultiple S Ource D Omain a Daptation with a D - Versarial L Earning
While domain adaptation has been actively researched in recent years, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. Naive application of such algorithms on multiple source domain adaptation problem may lead to suboptimal solutions. We propose a new generalization bound for domain adaptation when there are multiple source domains with labele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in neural information processing systems
دوره 4 شماره
صفحات -
تاریخ انتشار 2012